

Leonardo Aircraft

Clean Aviation: Hybrid-Electric Regional Thrust

Overview

Clean Aviation French infoday

27.04.2022

Hybrid-Electric regional vision

- By mid-2030, the mobility of people and goods is expected to undergo progressive changes, especially over distances of less than 500 km (inter-urban regional connections).
- Air vehicles operating in this range and operational environment such as hybridelectric propulsion are considered the first scheduled air transport system to adopt technologies ready for zero-emission

The regional aircraft will integrate technologies ready for entry into service by 2035, incorporating viable solutions for infrastructure, and certification.

- The aircraft will include hybrid-electric propulsion supported by 100% drop-in fuels or hydrogen -whether fuel cells or H2 burning- for the thermal power source, to reach up to 90% lower emissions while being fully compliant with ICAO noise rules.
- Regional air transport may be a "first case" for other air vehicle segments:
 - innovative and disruptive technologies
 - opening up new business models for societal demands in terms of people and goods transport: shorter field length and small airports, simplified operations, quick turn-around times, ...
 - ability to operate in a multi-modal mobility frame

^{© 2022} Leonardo - Società per azioni

Implemention in Clean Aviation

- Aircraft integration: regional aircraft as the first commercial platform in the zero-emission pathway with a 2035 EIS by hybrid propulsion and advanced on-board systems
 - Unprecedented challenges for integrating electrical, thermal and propulsive systems with performance challenges 1-2 orders of magnitude bigger in complexity and/or volume/size/weight than current ones
 - Figure out and validate at real scale an aircraft concept and related performance suitable to future societal needs for actual impact
 - Streamline design and qualification/certification processes to meet 2035 EIS and maximize impact
- 2. Technologies: by developing the bricks enabling an HER A/C a reality
 - Develop and assess hybrid propulsion architecture and related components and systems solving the high power, high voltage electrical network challenges and related thermal management issues
 - Develop digital and sustainable solutions applied to design and manufacturing processes introduced by new HER propulsion, system and integration challenges

Clean Aviation Call 1 topics

Identification Code	Title	Type of Action	Max Projects Number	Ind. Funding Value in (M€)	
	Hydrogen-powered aircraft topics				
CLEAN-AVIATION-2022-01-HPA-01	Direct Combustion of Hydrogen in Aero-engines	IA	2	115	
CLEAN-AVIATION-2022-01-HPA-02	Multi-MW Fuel Cell Propulsion System for Hydrogen-Powered Aircraft	IA	2	50	
CLEAN-AVIATION-2022-01-HPA-03	Large Scale Lightweight Liquid Hydrogen Integral Storage Solutions	IA	1	10	
CLEAN-AVIATION-2022-01-HPA-04	Near Term Disruptive Technologies for Hydrogen-Powered Aircraft	IA	2	7	
	Hybrid-electric powered regional aircraft topics				
CLEAN-AVIATION-2022-01-HER-01	Multi-MW Hybrid-Electric Propulsion System for Regional Aircraft	IA	2	75	
CLEAN-AVIATION-2022-01-HER-02	Thermal Management Solutions for Hybrid-Electric Regional Aircraft	IA	1	40	
CLEAN-AVIATION-2022-01-HER-03	Electrical Distribution Solutions for Hybrid-Electric Regional Aircraft	IA	1	40	
CLEAN-AVIATION-2022-01-HER-04	Innovative Wing Design for Hybrid-Electric Regional Aircraft	IA	1	20	
	Short/short-medium range aircraft topics				
CLEAN-AVIATION-2022-01-SMR- 01	Ultra Efficient Propulsion Systems for Short and Short-Medium Range Aircraft	IA	3	175	
CLEAN-AVIATION-2022-01-SMR- 02	Ultra Performance Wing for Short and Short-medium Range Aircraft	IA	2	55	
CLEAN-AVIATION-2022-01-SMR- 03	Advanced Low Weight Integrated Fuselage and Empennage for Short Range and Short-Medium Range Aircraft	IA	1	40	
	Transversal activity topics			•	
CLEAN-AVIATION-2022-01-TRA-01	Aircraft architectures & technology integration for aircraft concepts ranging from regional to short-medium range applications	IA	3	90	
CLEAN-AVIATION-2022-01-TRA-02	Novel Certification Methods and Means of Compliance for Disruptive Technologies	IA	1	18	
	Coordination and Support Actions				
CLEAN-AVIATION-2022-01-CSA-01	Developing a European Clean Aviation Regional Ecosystem (ECARE)	CSA	1	0.72	
TOTAL	14 topics			735.72	

© 2022 Leonardo - Società per azioni

Clean Aviation topics affecting Hybrid-Electric Regional Thrust

Hydrogen Powered Aircraft

H2 Storage

H2 Distribution System

H2 Direct Burn Propulsion System

Fuel Cell Propulsion System

Near Term Disruptive Technologies

Longer Term Disruptive Technologies

Climate assessment

Primary

Hybrid Electric Regional Aircraft Aircraft architecture and configuration Hybrid-Electric Propulsion Advanced Electric Distribution Thermal Management Airframe Integration Wing Airframe Integration Fuselage

Digitalisation

Transversal Project

CERTIF 2035

Sustainable Industrialisation

Disruptive Propulsion

Ultra Efficient Wing

Aircraft architecture and integration

Short & Medium Range Aircraft

Integrated Low Weight Fuselage / Empennage

Hybrid-Electric Regional: highly interconnected and multidisciplinary

HER Project	Links within HER	Links with SMR	Links with H2	Type of links and	Links with other EU
				direction	R&T initiatives
1) Aircraft architecture and configuration	All HER projects – continuous interaction	 Common best practice, certification, standards Impact monitoring principles and features 	Reference a/c requirements, aircraft integration results, key system features and timeline	 Requirements to the other projects Results and feedback from the other projects 	FHC, BEPA, SESAR 3, Cluster 5 Collaborative Research
2) Hybrid-Electric propulsion	Key interactions with 3, 4, 5 (see HER Phase 1 integrated planning)	 Requirements for Fuel Cell suitable to aeronautical standard at MW scale Requirements for H2 burning at MW scale 	 Impact monitoring principles and features Fuel cell propulsion architecture and performances H2 burning performance 	Bidirectional data and solutions with related projects	FHC, BEPA, Cluster 5 Collaborative Research
3) Advanced Electric Distribution	Key interactions with 2, 4, 5, (see HER Phase 1 integrated planning)	Scalability of all-electric systems to SMR at MW scale per channel	Fuel cell features (key priority) at MW scale for propulsion	 Bidirectional data and solutions with related projects Electrical requirements to the other projects 	BEPA, FHC, Cluster 5 Collaborative Research
4) Thermal Management	Key interactions with 3, 4, 5 (see HER Phase 1 integrated planning)	 Scalability to SMR size Standards and certification 	H2 tanks and ancillary systems (key priority)	Bidirectional data and solutions with related projects	BEPA, FHC, Cluster 5 Collaborative Research
5) Airframe integration Wing	Key interactions with 2, 3, 4, 6 (see HER Phase 1 integrated planning)	• N/A	H2 burning (lower priority)	Bidirectional data and solutions with related projects	Made in Europe, Collaborative Research Cluster 4 and 5
6) Airframe Integration Fuselage	Key interactions with 2, 3, 4, 5 (see HER Phase 1 integrated planning)	Sharing thermal integration of new power sources	Fuel cell features and constraints	Bidirectional data and solutions with related projects	Made in Europe, Collaborative Research Cluster 4 and 5
7) Digitalisation	All HER projects –	 Common approach to interface CERTIF 2035 Shared digital standards and backbone 	• N/A	 Digitalization targets to achieve to HER projects Models and specific tools to integrate 	Digital opportunities in EU, Cluster 4 and 5 Collaborative Research, Made in Europe

Hybrid-Electric Regional Demonstration Strategy

Ground demo Flight demo Out of HER

Phase 1 HER

projects

Phase 2 ground demo

Results available

COMPANY CONFIDENTIAL

Source

*

Hydrogen-powered aviation

A fact-based study of hydrogen technology, economics, and climate impact by 2050 (May 2020)

© 2022 Leonardo - Società per azioni

Regional hybrid-electric aircraft architecture and configuration proposal

What for	 Definition of the potential hybrid-electric regional aircraft concept targeting 2035 EIS Definition and assessment of the real-scale demonstrators -in-flight and on-ground- to be performed after 2025 	
How	 New Aircraft Architecture & Configuration Sustainable Industrialisation & Digitalisation Processes, Methods and Tools Demonstration strategy to mature technologies, anticipate certification and shorten exploitation 	
What	 key performance, architectures, features and sizing at aircraft level certification global approaches and specific rules measures promoting the transition to climate neutral aerial mobility impact on key operative factors and infrastructures 	

Phase 1

Preliminary integration

V&V plan for HER building blocks

requirements &

systems interfaces Models and tools

Impact assessment Aircraft certification and operative issues

Technical

integration

•

.

Aircraft TLAR

Aircraft concepts modelling and performance

© 2022 Leonardo - Società per azioni

CONTACTS

Leonardo Aircraft

Francesco Salvato EU research technologies and strategies 0039 81 887 3531 0039 331 6133658 francesco.salvato@leonardo.com

																•	·	•		•	·	·
						·		·			•	·	·		•	·	·				•	·
														*			ï			*	*	
					*		·						·			•	·	•			·	
											·			•			·			,	·	
	·	·	·	·	·	•	·	·	·	•	·	·	·	·	·	·	·	·	·	·	·	·
							·	·	·	•	·	·	·	·	·	·	·	÷		·		·
									٠			·				*	÷	·	·		·	
						٠					٠						·			÷	·	
			·	·	•	·	·	·	·	·	·	·	·	•	•	•	·	·	·			
					*				٠	•	·	·	·	•	•	•	·	·	•	٠	·	
												÷					·	·		÷		·
				•					٠								1				•	·
		·	·	•	•	·	·	·	·	•	·	·	·	·	·	·	·					
														·	·	·	·	·	·	·	·	•
			,	•		•		1	*						*	·	ŗ,					•
											٠	·			•	*	·	•		·	٠	
											÷		·				·			÷		
									•													

leonardo.com

米

THANK **YOU** FOR YOUR ATTENTION

leonardo.com

										1	*		*		·	·	·	·	·	·	•
	*				·	·	·	·	·	•	·	·	·	·	·	•	·	·	·	•	·
															*				*		
				1	*		*		*	*	*			*	*			0	÷		*
										*	٠			*	*	÷		0		*	*
•	٠	·	·	•	•	•	•	·	•	•	•	·	•	•	•	·	•	•	٠	·	•
						·	·	·	·	•	·	·	·	·	•	·	8	0		*	
						4		8	*	*	*	0	*	*	*	*	0	0	*		٠
				*	٠	6	*		*		*		*	*	*	0		0	*		
		·	•	·	•	·	·	·	·	÷	•	·	•	•	•	•	·	•	*	*	
					٠	*			•	·	•	·	·	·	٠	·	•	•	•	•	
											4	0	0		*	0	8	0			
	*						1		*		*			*					*	*	
	•	•	•	•	•	•	·	•	•	•	·	•	•	•	•	•	*		*	*	*
										*			•	•	•	•	•	•	•	•	•
	*			*	*			*	0		٠				٠	*	*	9	5		*
									*	*			*		*	*		8	*	•	
							*						0					0			
																			+		